
The introduction of Genetic Algorithm 

 

1. Purpose 

This article illustrates the genetic algorithm briefly,to tell the beginner who have no 

previous knowledge about the genetic algorithm,how dose it works. 

 

2. Biological genetics and evolution 

 

(1) Genome： 

The collection of chromosomes within a cell holds all the information necessary to 

reproduce that organism. 

(2) Crossover： 

When two organisms mate and reproduce, their chromosomes are mixed together to 

create an entirely new set of chromosomes, which consists of genes from both parents. 

This process is called recombination or crossover. This could mean that the offspring 

inherits mainly the good genes, in which case it may go on to be even more successful 

than its parents (for example, it has better defense mechanisms against predators), or it 

may inherit mainly the bad genes, in which case it may not even be able to reproduce.  

(3) Mutate： 

when the genes are passed on to the offspring, there is a very small probability that an 

error may occur and the genes may be slightly changed. The evolution of creature comes 

from innumerable tiny mutations，The premise is that these mutations are beneficial to 

biological survival。 

(4) Fitness： 

The more fit the offspring are, the more likely they will go on to reproduce and pass on 

their own genes to their offspring. Each generation, therefore, will show a tendency to be 

better at survival and mating than the last. 

 



3. Genetic algorithms used in computers 

 

The working process of genetic algorithm in computer essentially simulates the biological 

evolution process. 

(1) First, you figure out a way of encoding any potential solution to your problem as a “digital” 

chromosome. 

(2) Then, you create a start population of random chromosomes (each one representing a 

different candidate solution) and evolve them over time by “breeding” the fittest individuals。 

(3) In the meantime, a small amount of mutation should be added to certain positions on the 

chromosome. 

(4) The genetic algorithm will converge upon a solution. Genetic algorithms do not guarantee 

a solution, nor do they guarantee to find the best solution, but if utilized the correct way, you 

will generally be able to code a genetic algorithm that will perform well. 

(5) The best thing about genetic algorithms is Team LRN 99 that you do not need to know how 

to solve a problem; you only need to know how to encode it in a way the genetic algorithm 

mechanism can utilize. 

 

4. The explanation of other nouns in genetic algorithm 

 

(1)Crossover rate：The crossover rate is simply the probability that two chosen chromosomes 

will swap their bits to produce two new offspring.  

(2)Mutation rate：The mutation rate is the probability that a bit within a chromosome will be 

changed 

(3)TSP (Traveling Salesman Problem) ： 

Given a collection of cities, the traveling salesman must determine the shortest route that will 

enable him to visit each city precisely once and then return back to his starting point. 

5. The implement of genetic algorithm 

Each chromosome is encoded in some way to represent a solution to the problem at hand. 

It may be a very poor solution, or it may be a perfect solution, but every single 

chromosome represents a possible solution (more on the encoding in a moment). Once 

an initial population is created ,then you do this： 

 

Loop until a solution is found: 

1. Test each chromosome to see how good it is at solving the problem and assign a 

fitness score accordingly. 

2. Select two members from the current population. The probability of being selected is 

proportional to the chromosome’s fitness—the higher the fitness, the better the 

probability of being selected. A common method for this is called Roulette wheel 

selection. 

3. Dependent on the Crossover Rate, crossover the bits from each chosen chromosome 

at a randomly chosen point 



4. Step through the chosen chromosome’s bits and change dependent on the Mutation 

Rate. 

5. Repeat steps 2, 3, and 4 until a new population has been created. 

End loop 

Each loop through the algorithm is called a generation (steps 1 through 5). We call the 

entire loop an epoch. 

 

 

 

 

 

 

 

 

 

 

 

 



6. Common Operators used in Genetic Algorithms 

 

(1) The Genetic algorithms of Chromosome binary coding： 

 

Selection Operators 

Elite Selection:  

Elitism is a way of guaranteeing that the fittest members of a population are retained for 

the next generation. 

Roulette Wheel Selection: 

Roulette wheel selection is a method of choosing members from the population of 

chromosomes in a way that is proportional to their fitness—for example, the fitter the 

chromosome, the more probability it has of being selected. It does not guarantee that the 

fittest member goes through to the next generation, merely that it has a very good 

probability of doing so. 

 

Crossover Operators 

SinglePoint Crossover: 

It simply cuts the genome at some random point and then switches the ends between 

parents. 

DoublePoint Crossover: 

Instead of cutting the genome at just one point, two-point crossover (you guessed it) cuts 

the genome at two random points and then swaps the block of genes between those two 

points. 

MultiPoint Crossover: 

to move down the length of the parents, and for each position in the chromosome, 

randomly swap the genes based on your crossover rate。 

 

Mutation Operators 

MultiPoint Mutation: 

Along the chromosome length，depending on the crossover rate，start mutate operation 

 

Fitness Scaling Operators 

Rank Fitness Scaling:  

Rank scaling can be a great way to prevent too quick convergence, particularly at the 

start of a run when it’s common to see a very small percentage of individuals 

outperforming all the rest. The individuals in the population are simply ranked according 

to fitness, and then a new fitness score is assigned based on their rank. 

 

(2) The Genetic algorithms of chromosome decimal coding, used to solve TSP problems: 

 

Selection Operators 

Roulette Wheel Selection: 



Roulette wheel selection is a method of choosing members from the population of 

chromosomes in a way that is proportional to their fitness—for example, the fitter the 

chromosome, the more probability it has of being selected. It does not guarantee that 

the fittest member goes through to the next generation, merely that it has a very good 

probability of doing so. 

Fitness Proportionate Selection: 

Selection techniques of this type choose offspring using methods which give individuals 

a better chance of being selected the better their fitness score. Another way of 

describing it is that each individual has an expected number of times it will be chosen to 

reproduce. This expected value equates to the individual’s fitness divided by the average 

fitness of the entire population. 

Elite Selection: 

Elitism is a way of guaranteeing that the fittest members of a population are retained 

for the next generation. 

Steady State Selection: 

Steady state selection works a little like elitism, except that instead of choosing a small 

amount of the best individuals to go through to the new generation, steady state 

selection retains all but a few of the worst performers from the current population. The 

remainder are then selected using mutation and crossover in the usual way. Steady 

state selection can prove useful when tackling some problems, but most of the time it’s 

inadvisable to use it. 

Stochastic Universal Sampling Selection: 

Stochastic Universal Sampling (SUS for short) is an attempt to minimize the problems of 

using fitness proportionate selection on small populations. Basically, instead of having 

one wheel which is spun several times to obtain the new population, SUS uses n evenly 

spaced hands, The amount of pointers is equal to the amount of offspring required. 

Tournament Selection: 

To use tournament selection, n individuals are selected at random from the population, 

and then the fittest of these genomes is chosen to add to the new population. This 

process is repeated as many times as is required to create a new population of 

genomes. Any individuals selected are not removed from the population and therefore 

can be chosen any number of times. 

 

Crossover Operators 

Partially-Mapped Crossover Operator (PMX): 

first choose two random crossover point, Then you look at the two center sections and 

make a note of the mapping between parents,.Now, iterate through each parent’s genes 

and swap the genes wherever a gene is found that matches one of those listed. Step by 

step it goes  

Order-Based Crossover (OBX): 

To perform order-based crossover, several cities are chosen at random from parent and 

then the order of those cities is imposed on the respective cities in the child. 

Position-Based Crossover (PBX): 

This is similar to Order-Based Crossover, but instead of imposing the order of the cities, this 



operator imposes the position. 

 

Mutation Operators 

Displacement Mutation(DM): 

Select two random points, grab the chunk of chromosome between them, and then reinsert 

at a random position displaced from the original. 

Exchange Mutation (EM): 

Select two genes on chromosome to exchange 

Insertion Mutation (IM): 

This is a very effective mutation and is almost the same as the DM operator, except here 

only one gene is selected to be displaced and inserted back into the chromosome. 

Scramble Mutation (SM): 

Choose two random points and “scramble” the cities located between them. 

 

Fitness Scaling Operators 

Rank Fitness Scaling: 

Rank scaling can be a great way to prevent too quick convergence, particularly at the start 

of a run when it’s common to see a very small percentage of individuals outperforming all 

the rest. The individuals in the population are simply ranked according to fitness, and then 

a new fitness score is assigned based on their rank. 

Sigma Fitness Scaling: 

If you use raw fitness scores as a basis for selection, the population may converge too quickly, 

and if they are scaled as in rank selection, the population may converge too slowly. Sigma 

scaling is an attempt to keep the selection pressure constant over many generations. At the 

beginning of the genetic algorithm, when fitness scores can vary wildly, the fitter individuals 

will be allocated less expected offspring. Toward the end of the algorithm, when the fitness 

scores are becoming similar, the fitter individuals will be allocated more expected offspring. 

Scaling Bolzmann Fitness: 

using sigma scaling can keep the selection pressure constant over a run of your genetic 

algorithm, but sometimes you may want the selection pressure to vary. A common scenario 

is one in which you require the selection pressure to be low at the beginning so that diversity 

is retained, but as the genetic algorithm converges closer toward a solution, you want 

mainly the fitter individuals to produce offspring. 

 

7. Further reading 

About Genetic Algorithm: 

https://zh.wikipedia.org/wiki/%E9%81%97%E4%BC%A0%E7%AE%9

7%E6%B3%95 

https://zh.wikipedia.org/wiki/%E9%81%97%E4%BC%A0%E7%AE%97%E6%B3%95
https://zh.wikipedia.org/wiki/%E9%81%97%E4%BC%A0%E7%AE%97%E6%B3%95

